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ABSTRACT

This paper presents the application of TOPMODEL in the Pinang catchment of Malaysia for stream flow simulation. An 
attempt has been made to use remote-sensing data (ASTER DEM of 30 m resolution) as a primary input for TOPMODEL in 
order to simulate the stream flow pattern of this tropical catchment. A calibration period was executed based on 2007-
2008 hydro-meteorological dataset which gave a satisfactory Nash-Sutcliffe model (NS) model efficiency of 0.749 and 
a relative volume error (RVE) of -19.2. The recession curve parameter (m) and soil transmissivity at saturation zone 
(To), were established as the most sensitive parameters through a sensitivity analysis processes. Hydro-meteorological 
datasets for the period between 2009 and 2010 were used to validate the model which resulted in satisfactory efficiencies 
of 0.774 (NS) and -19.84 (RVE), respectively. This study demonstrated the ability ASTER DEM acquired from remote sensing 
to generate the required TOPMODEL parameters for stream flow simulation which gives insights into better management 
of available water resources. 
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ABSTRAK

Kertas kerja ini membentangkan penggunaan TOPMODEL di kawasan tadahan Pinang, Malaysia bagi simulasi aliran 
sungai. Percubaan telah dibuat untuk menggunakan data penderiaan jauh (ASTER DEM resolusi 30 m) sebagai input utama 
bagi TOPMODEL untuk mensimulasikan corak aliran sungai tadahan tropika ini. Tempoh penentukuran telah disempurnakan 
berdasarkan dataset meteorologi hidro 2007-2008 yang memuaskan model Nash-Sutcliffe (NS); model kecekapan 0.749 
dan relatif jumlah kesilapan (RVE)-19.2. Parameter lengkung kemelesetan (m) dan kememancaran tanah di zon tepu (To), 
telah ditubuhkan sebagai parameter yang paling sensitif melalui proses analisis sensitiviti. Meteorologi hidro dataset 
untuk tempoh antara tahun 2009 dan 2010 telah digunakan untuk mengesahkan model yang mengakibatkan kecekapan 
yang memuaskan masing-masing 0.774 (NS) dan-19.84 (RVE). Kajian ini menunjukkan keupayaan yang diperoleh ASTER 
DEM daripada teknologi pengesanan jarak jauh untuk menjana parameter TOPMODEL yang diperlukan untuk simulasi 
aliran sungai yang memberikan pemahaman lebih baik tentang pengurusan sumber air sedia ada.

Kata kunci: Analisis sensitiviti; DEM ASTER; indeks topografi (TI); kawasan tropika, pengesanan jarak jauh; Pinang

INTRODUCTION

There has been growing concern along many river systems 
due to the enormous floods in Malaysia that resulted in 
significant loss of life and property (Izham et al. 2011). 
The Pinang catchment area located on Penang Island is 
dominated by flash floods. Flash floods are the result of the 
sloped area and high rainfall as well as the cross-section 
capacity of the river networks feeding into this catchment. 
Flood management depends among other things on the 
relationship between rainfall and runoff. This relationship 
would provide basic information regarding the stream flow 
patterns in the study area in a way that would assist water 
resource managers. Modeling runoff is an important issue 
in the field of hydrology and in the tropics and it is one 
of the most complex hydrological phenomena (Güntner 
1999) because of limited data on hydrological parameters 
as well as the scarcity of the spatial landform data required 

for remote sensing analysis and geographic information 
system (GIS) processing (Sigdel et al. 2011). 
	 Efforts have been made to understand the nonlinearity 
of the relationship between rainfall and runoff. This 
study adopted a topographic-based model (TOPMODEL), 
developed by Beven and Kirkby (1979) to understand this 
kind of relationship by simulating the streamflow of the 
main river in the tropical catchment area of Penang Island. 
TOPMODEL is appropriate for data poor regions because it 
requires less data and minimal computation (Beven et al. 
1995; Chappell et al. 1998; Gumindoga et al. 2011; Sigdel 
et al. 2011). It is widely used in various regions of the world 
(Beven 1997a; Campling et al. 2002; Chappell et al. 2006; 
Chen et al. 2010; Fleischbein et al. 2006; Kavetski et al. 
2003; Kwanyuen & Pooworakulchai 2003; Molicova et al. 
1997; Pradhan et al. 2008; Quinn et al. 1991; Vongtanaboon 
& Chappell 2009) and it has provided satisfactory results, 
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especially for stream flow simulation. It has also been 
used for different purposes that address environmental 
(Huang & Jiang 2002), water balance assessment (Kinner 
& Stallard 2004) and agricultural water pollution issues 
(Quinn et al. 2008). 
	 TOPMODEL is an investigative model (O’Connell 1991) 
that consists of a number of areas that cover two types of 
runoff and the flow base with underground operations. One 
of the key inputs of TOPMODEL is its topographic index 
map. It is obtained from a elevation maps such as digital 
elevation models (DEMs). An accurate representation of 
catchment topography is required with a fine resolution 
DEMs. Numerous of TOPMODEL studies have observed 
the effect of DEM resolution on catchment simulation 
results found that higher resolved grids gave better results. 
Bruneau et al. (1995), Gallant and Hutchinson (1996), 
Jing et al. (2012), Lin et al. (2010), Moore et al. (1993), 
Quinn et al. (1996, 1991), Wolock and McCabe (2000), 
Wolock and Price (1994), Zhang and Montgomery (1994) 
and Zhang et al. (1999) showed how DEM resolution 
affected the topographic computation features and outflow. 
Quinn et al. (1995) noted that different DEM resolutions 
can create different spatial patterns of the topographic 
index. Zhang and Montgomery (1994) stated that the 
mean of the topographic index distribution increased as 
data resolution became coarser. Moreover, Gallant and 
Hutchinson (1996) found that the DEM spatial resolution 
affects topographic characteristics through terrain 
discretization and smoothing. Fine resolution DEMs provide 
the specifications related to watersheds and the paths which 
affect the results of the simulation (Beven 1997b; Quinn 
et al. 1995). Due to its ability to play an important role in 
rainfall runoff modeling (Lee & Kim 2011), the advanced 
spaceborne thermal emission reflection radiometer (ASTER) 
DEMs were employed in this study. The accuracy of the 
ASTER DEMs was evaluated based on control points on 
the ground by LPDAAC (2001). It was used to estimate 
the hydrological parameters required as model inputs. 
Gumindoga et al. (2011) concluded that remote-sensing 
created by DEMs can be combined with TOPMODEL to 
predict stream flow in regions with poor data.
	 The main focus in this paper was to highlight the 
possibility of applying ASTER DEM based satellite imagery 
in a semi distributed model (TOPMODEL) to simulate the 
stream flow of the main river in the tropical catchment area 
of Penang Island. 

METHODS, DATA COLLECTION AND ANALYSIS

STUDY AREA

This study examined the Pinang catchment area (Figure 1). 
The Pinang catchment area is located in the northern part 
of Penang Island and it includes the largest river basin on 
the Island. The geographical coordinates of the area are 5º 
21’ 32’’ to 5º 26’ 48’’ N latitude and 100º 14’ 26’’ to 100º 
19’ 42’’ E longitude. The study area (34km2) is a humid 
tropical area with a mean annual rainfall ranging from 1800 

to 3000 mm in the lowlands and highlands, respectively 
(Ismail 2000). The area also consists of 4 tributaries: 
Sungai Pinang, Sungai Air Itam, Sungai Dondang and 
Sungai Air Putih. The elevation ranges from 2 to 785 m 
above sea level. 

TOPMODEL BACKGROUND AND ITS PARAMETERS

Several TOPMODEL versions have been produced in 
different program environments such as Matlab, Fortran 
and interactive data model (IDL). This study employed the 
IDL TOPMODEL because of the availability and its ability 
to deal with the topographic index histogram of the small 
catchment certainly. It consists of three dynamic zones, 
which are the root, gravity and saturated zones as shown 
in Figure 4. The root zone receives precipitation (P) and 
releases moisture at a potential rate (Ep) of evaporation 
until it is empty. Runoff from the contributing areas and 
infiltration occurs once the first zone is full. The third zone 
of the soil profile is assumed to have exponential outflow 
represented by (Figure 2). 
	 TOPMODEL’s important assumption is the similarity 
between the water table and ground surface slopes 
(hydraulic gradient approximated with ground surface 
slope). The direction of subsurface flow and surface flows 
are parallel based on topography. The subsurface flow is 
described by (1) (Beven et al. 1995; Romanowicz 1997). 
Equation 2 shows the runoff production areas calculation 
for the catchment area.

	 	 (1)

	 	 (2)

where, Qb is the subsurface flow,  is the average soil 
moisture deficit, ΔSi is the difference between the average 
area deficits and local area deficits, Si is the saturation 
deficit at any point in the catchment area,  is the average 
deficit of soil at saturation for the catchment, λi is local 
topographic index and  is the average catchment 
topographic index. 
	 Equation 3 describes the balanced equation used to 
calculate the change in the soil deficit over time:

	 	 (3)

where, Qv is an incremental flow rate which inter the third 
storage and  is the average deficit of soil at saturation 
for the catchment.

HYDRO-METEOROLOGICAL DATA COLLECTION

A daily inputs and outputs time step was used in this study. 
The Jln. P. Ramlee gauging station was the catchment 
outlet. The water level data sets (2007-2010) were provided 
by Malaysia’s Department of Irrigation and Drainage 
(DID). The data from 2007-2008 and 2009-2010 were 
used as calibration and validation periods, respectively. To 
calculate discharge, a river cross-section was observed at 
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FIGURE 1. Location of Pinang catchment area in Pulau Pinang, Malaysia

FIGURE 2. TOPMODEL scheme represents the three soil areas (Huang et al. 2009)
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the outlet station using fixed surface water width (w). Since 
the channel is quite shallow, the side slope is considered as 
presented in Figure 3 and thus the estimation of channel 
flow based on channel’s cross-section is close to accurate. 
The river depth (y) was assumed to vary based on the 
available water level datasets. 
	 One of the issues that affected the performance of the 
model was rainfall heterogeneity (Candela et al. 2005). 
For that reason, rainfall was calculated for the study area 
using the Thiessen Polygons method (Figure 4). As small 
catchment area, the three stations Kolam Bersih, Bukit 
Bendera, and Kolam Air Itam were sufficient relatively to 
be used for areal precipitation based on Thiessen Polygon 
calculation shown in Table 1. 

ROUTING OF OVERLAND FLOW

To implement flow routing, a delay approach was used 
that employed a fractional area of the catchment area for 
each ln(α/tanβ) class (Gumindoga et al. 2011). Fractional 
areas helped predict the time water would take to reach 
the outlet. Figure 5 shows the routing of overland flows 
generated in a GIS. The fractional area and its distance from 
the outlet as well as channel velocity were used as inputs. 

TOPOGRAPHIC INDEX MAP TI

A 30 m ASTER DEM for Penang Island was collected from 
NASA/METI from the ASTER global digital elevation model 
(GDEM) website. The accuracy of the elevation data of the 

 TABLE 1. Rainfall stations in UTM coordinates and Thiessen polygon weights
 

No. Station name Location Covered area 
(km2)

Thiessen 
weightsX Y

1
2
3

Kolam Air Itam
Bukit Bendera
Kolam Bersih

640708
640703
642483

597027
599238
601484

25.75
6.96
1.48

0.753
0.293
0.043

FIGURE 4. Areal precipitation estimation through 
Thiessen polygons with its weights

FIGURE 3. Hydraulic cross-section used for discharge calculation
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study area was assessed, including experimental points to 
show that the ASTER DEM was able to provide hydrological 
parameters (Vithanage 2009). 
	 TI was introduced by Beven and Kirkby (1979) and 
has since then been used as a key driver in TOPMODEL 
simulations. The DEM hydro-processing technique in the 
integrated water and land information system (ILWIS) was 
used to remove the local depressions in the DEM before the 
flow direction was computed. A computation of the flow 
accumulation then followed. The topographic index map 
was produced using (4):

	 TI= ln (α / tanβ) 	 (4)

where, α is the contributing area (flow accumulation * 
DEM pixel area), tanβ is the local slope of the cell and the 
drained area per unit of contours length in (m), respectively 
(Beven 1997a; Qin et al. 2007).

RESULTS AND DISCUSSION

LAND SURFACE PARAMETERIZATION

GIS and remote sensing tools are able to be used for 
obtaining the input parameters of TOPMODEL (Chen et 
al. 2003; Sigdel et al. 2011). Penang Island DEM hydro-
possessing was applied to obtain a topographic index map 
through flow direction and flow accumulation calculations. 
Figure 6 shows the topographic index map produced for 
the Pinang catchment area. The number of pixels versus 
the values of topographic index map is also illustrated as 
a histogram. The topographic index map value was high 
when there was a large amount of runoff. The highest 
numbers of pixels found in the map were equal to 10 and 
this area was located inside and around the channels. It 
included a few north, west and south regions of Pinang 
catchment area, which are mountainous.

SENSITIVITY ANALYSIS

Several parameters can affect the simulation of stream 
flow. Some of these parameters are described as sensitive 
(Beven & Kirkby 1979; Beven & Freer 2000; Gumindoga 
et al. 2011) depending on the conditions of the catchment 
areas in the study. The most sensitive TOPMODEL parameter 
was the recession parameter m, which was described by 
Gallart et al. (1994) and Romanowicz (1997). During the 
pre-calibration process, the parameter’s influences were 
observed. Their ranges were specified based on trial and 
error. From the pre-calibration process and based on current 
relevant literature, specific parameters were selected for 
sensitivity analysis. However, the efficiency of the model 
was calculated in terms of Nash Sutcliffe (NS) (Nash & 
Sutcliffe 1970) and relative volume error (RVE) (Janssen 
& Heuberger 1995) (5) and (6), respectively. The result 
of this process, the recession curve parameter m, and the 
soil transmissivity at saturation zone To (shown in (1)) 
were selected as the most sensitive parameters for their 
sensitivity in order to create a simulation of the period 
from 2007 to 2008. 

	 NS =  	 (5)

	

	 RVE = 	 (6)

where, n is the total number of time steps, Qobs, Qsim, 
are observed, simulated and mean observed discharges, 
respectively.

Sensitivity Analysis for M Parameter Effect   The 
recession curve parameter m was chosen to be a significant 

FIGURE 5. Distance map used for overland flow routing 
of Pinang catchment area
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TOPMODEL input parameters. It was analyzed and reviewed 
by Tallaksen (1995). It describes the behavior of soil 
transmissivity by depth and for different discharge 
values, which were assumed to be an exponential profile. 
This parameter was evaluated through recession curve 
analysis. Recession curve parameter m can be used for 
subsurface drainage prediction as shown in (1). It is also 
used as scaling parameter for regions that contribute 
runoff, as shown in (2) (Romanowicz 1997). It assumes 
that the transmissivity effectiveness at saturation over all 
catchment areas is homogeneous. 
	 The parameter m influences the simulated of surface 
saturation for a given zone and the amount of area 
required in a zone to achieve a given increase in runoff 
for a contributing area. A high m value reflects a deep 
infiltration rate and slow response to rainfall (Beven & 
Kirkby 1979). The values of the TOPMODEL parameters 
were fixed to range between 0.1 and 0.9. Figure 7 shows 
the relationship between m and the chosen efficiencies. 
The lowest values for NS and RVE were set to 0.384 
and 13.467 for and these represent the lowest values 
for parameter m. This meant that NS increased and RVE 
decreased when the m values increased. The highest value 
of efficiency for NS was 0.748, which was found when 
m was equal to 0.7. This was unlike the RVE efficiency, 
which was -19.202, at the same m value. Significant water 
balance errors can be found from increasing RVE with 
smaller values of m (Gumindoga et al. 2011). 

Sensitivity Analysis to To Parameter Effect   All values 
for the TOPMODEL parameters were fixed during the 
sensitivity analysis for the To parameter. The impervious 
characteristic of the study area was represented by To. It 
simulated hydrograph, especially on the rising and falling 
limb, without affecting the baseflow (Sigdel et al. 2011). 
Figure 8 shows the relationship between the To parameter 
with each NS and RVE change. The To parameter values 
ranged between 4 and 12. NS efficiency values ranged 

from the lowest value of 0.656 to its highest value of 
0.748 when To was equal to 7. 
	 Unlike the RVE efficiency values, which ranged 
from 14.112 to -19.43 when To was equal to 4 and 12, 
respectively. Deep effective soil was generated whenever 
a high value of the m parameter was coupled with small 
value of for the Toparameter. In this study, a high To value 
was investigated with high m value to accommodate for 
the high percentage urbanized area in the Pinang catchment 
area. This produced a simulation with a quick response to 
runoff with low transmitting capacity and water holding.

RESULTS OF THE CALIBRATION PROCESS

Based on the sensitivity analysis of the parameters m and 
To, the results of the calibration period were executed. 
In terms of matches, the calibration period was weak. 
Figure 9 shows that the baseflows for the months from 
February to May and from July and August of 2007, as 
well April, July and August of 2008, were underestimated. 
This reflected an unsatisfactory performance of the 
baseflow simulation. The baseflow was overestimated for 
November and December of 2007 and 2008. Using the 
sensitivity analysis process, the optimization improved 
the hydrograph by the increasing the NS and RVE 
efficiencies to 0.749 and -19.2, respectively. TOPMODEL 
tends to underestimate the simulation of overall period 
and its performance is fairly well. Figures 7 and 8 show 
the relationship between the parameters and the values 
that were optimized. The priority was given to NS. The 
critical values were calculated and are shown in Table 
2. These were used in the validation period as fixed 
parameters with the hydro-meterlogical data sets.

RESULTS OF THE VALIDATION PROCESS

The hydro-meteorological datasets of 2009-2010 were 
applied using the optimized parameters transferred from a 

FIGURE 6. The topographic index map and the topographic index value distribution
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calibration period to validate the model. Figure 10 shows 
the result of the validation period. Accurate matches were 
shown for rising limbs and the recession portion of the 
simulated hydrograph for May until October of 2009. 
Good matches were found between June, July, August, 

TABLE 2. Parameters values used in calibration period process and their significance

Parameter Descriptions Impact Value
m (m)

To (m
2/h)

SRmax(m)

Td (h)
QO (m/timestep)
SRO (m)
CHV (m/h)
RV (m/h)
INFEX
Ko (m/h)
Δ

Ψ

Δθ

Control the rate of exponential decrease of transmissivity with increasing soil 
moisture and infiltration characteristics

Control the peak flow and shape of storm hydrograph
Maximum root zone storage, physically based, control Evaporation and local 

saturation deficit
Time delay constant, control the recharge rate from unsaturated to saturated zone
Initial observed discharge 
Initial root zone storage value
Control surface routing velocity, physically based
Stream velocity
An infiltration flag
Hydraulic conductivity at surface
Effective suction head
Moisture deficit

highly sensitive

highly sensitive
sensitive

sensitive
sensitive
sensitive

less sensitive
less sensitive
insensitive
insensitive
insensitive
insensitive

0.7

7
0.0015

2
0.0048
0.055
500
250
1

0.008
0.14
0.360

November and December of 2010. However, it failed to 
match the peak for October 2009 and the results were 
overestimated until May 2010. The simulated discharge 
from January to April 2009 and for a few months in 2010 
was underestimated. Furthermore, the overestimation 

FIGURE 7. The effect of m parameter on NS and RVE efficiencies

FIGURE 8. The effect of To parameter on NS and RVE efficiencies
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of baseflow was due to the spatial distribution of the 
rainfall may have been inaccurately represented as a 
result. Another contributing factor may have been errors 
in the input data for such a data poor area such as the 
Pinang catchment area. The model itself may also have 
been at fault. A satisfactory level of performance was 
obtained through NS and RVE efficiencies of 0.774 and 
-19.84, respectively (Elsner et al. 2010; Freer et al. 2004) 
(Table 3). Due to the superior quality of the data, a better 
result of the validation period was found in terms of NS 
efficiency. Likewise, the RVE efficiency was less when 
compared with the calibration period. 

CONCLUSION

TOPMODEL is used in this paper to simulate the stream 
flow of the small Pinang catchment area located in tropics. 
However, the following conclusions were drawn. Firstly, 
TOPMODEL was successfully applied in a tropical catchment 
area to simulate the stream flow. The efficiencies for NS 
and RVE were 0.749 and -19.2 for calibration period 
(2007-2008) and 0.774 and -19.84 for the validation period 
(2009-2010). Secondly, the two parameters, m and To were 
more sensitive to the simulated discharge hydrograph 
based on the efficiency of NS and RVE. In addition, this 
study used the capabilities of a remote sensing ASTER 30 

FIGURE 9. Simulated and observed discharge for calibration period, 2007-2008 
at Pinang catchment area, Malaysia

TABLE 3. Results obtained from calibration and validation processes

Periods
Calibration Validation

Importance
2007 - 2008 2009 - 2010

NS 0.749 0.774 Quantitatively describes the model accuracy for time scale models 
RVE -19.2 -19.84 Measuring volume errors by assessing the mass balance error between 

the observed and the simulated discharges

FIGURE 10. Simulated and observed discharge for validation period, 
2009-2010 at Pinang catchment area, Malaysia
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m DEM provided by METI/NASA to transfer the study area 
topography to simulate the flow of streams. 
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